One-step completions of hermitian partial matrices with minimal negative signature
نویسندگان
چکیده
منابع مشابه
completions on partial matrices ?
An n × n matrix is called an N0-matrix if all its principal minors are nonpositive. In this paper, we are interested in N0-matrix completion problems, that is, when a partial N0-matrix has an N0-matrix completion. In general, a combinatorially or non-combinatorially symmetric partial N0-matrix does not have an N0-matrix completion. Here, we prove that a combinatorially symmetric partial N0-matr...
متن کاملTotally nonpositive completions on partial matrices ∗ †
An n × n real matrix is said to be totally nonpositive if every minor is nonpositive. In this paper, we are interested in totally nonpositive completion problems, that is, does a partial totally nonpositive matrix have a totally nonpositive matrix completion? This problem has, in general, a negative answer. Therefore, we analyze the question: for which labeled graphs G does every partial totall...
متن کاملMinimal Signature for Partial Algebra
The concept of characterizing of partial algebras by many sorted signature is introduced, i.e. we say that a signature S characterizes a partial algebra A if there is an Salgebra whose sorts form a partition of the carrier of algebra A and operations are formed from operations of A by the partition. The main result is that for any partial algebra there is the minimal many sorted signature which...
متن کاملCongruence of Hermitian Matrices by Hermitian Matrices
Two Hermitian matrices A, B ∈ Mn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix C ∈ Mn(C) such that B = CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible iner...
متن کاملMinimal Interval Completions
We study the problem of adding edges to an arbitrary graph so that the resulting graph is an interval graph. Our objective is to add an inclusion minimal set of edges, which means that no proper subset of the added edges can result in an interval graph when added to the original graph. This problem is closely related to the problem of adding an inclusion minimal set of edges to a graph to obtai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1992
ISSN: 0024-3795
DOI: 10.1016/0024-3795(92)90424-9